
Improving Relevance of QA Responses for Query Inputs

Thivakkar Mahendran
tmahendran

Vincent Pun
cpun

Kathryn Ricci
kdricci

Apurva Bhandari
apurvabhanda

Somin Wadhwa
sominwadhwa

Abstract

BERT can be fine-tuned to build question an-
swering systems and systems for various other
NLP tasks. However, BERT is unable to pro-
vide answers to queries search engine users typ-
ically input, which are usually brief or frag-
mented sentences. To address this problem, we
propose a two pronged approach: 1) fine-tuning
the BERT QA model on queries 2) developing
an NMT model to convert queries to questions,
which are then used as input to the standard BERT
QA model. Our code is publically accessible at
https://github.com/sominwadhwa/cs585-q2q.

1 Introduction

Modern search engines (like Google, Bing,
DuckDuckGo) are getting increasingly better at
interpreting queries and extracting relevant text
from a huge corpora of results. For example,
a Google search for “Make Tea” results in an
instruction snippet on how we should go about
making tea. But a query like “nearest RMV”
results in no extracted text; rather it gives us
list of web pages with the relevant information.
However, searching for “Where is the nearest
RMV?” gives us the full address of the nearest
RMV office. Recent advances in the usage of
state-of-the-art natural language models like
BERT (Devlin et al., 2018) to extract contextual
information from vast portions of text have made
such IR tasks possible (Singh, 2018). On QA-type
tasks with reading comprehensions for instance,
we already seem to surpass human level perfor-
mance (Rajpurkar et al., 2016). However, if we
frame the questions as natural language queries,
something what an actual user is more likely to
input, the QA systems do not seem to perform
well on queries. To address this problem, we
propose two approaches: 1) fine-tuning the BERT

QA model on queries 2) developing a NMT model
to convert queries to questions, which are then
used as input to the standard BERT QA model.

Apart from the obvious application in search
engines, a Q2Q system such as that used in
our NMT approach has applications in chatbots
(question-answering) and communityQA (Zhao
et al., 2011).

Key Contributions: As a starting point, we
take an exisiting model that is known to work
well on QA type tasks (BERT) and a QA dataset
(SQuAD), generate queries using the questions
available and assess performance of these queries
on the QA model by evaluating responses. Sur-
prisingly, we observe a huge dip in performance.
Then we go on to fine tune the QA model using our
queries, and the performance improves a little, but
not as much as we thought. So we go on to train a
Neural MT model with attention to automatically
generate questions given the queries. While it isn’t
as good as we had expected, but it still gives rea-
sonable results (see attention maps in Error Anal-
ysis below). On top of that, we also conducted
some probe tasks by modifying our queries in dif-
ferent ways to investigate what our model actually
learns.

2 What you proposed vs. what you
accomplished

Proposed & accomplished ,

• Collect and preprocess QA datasets -
SQuAD, HotpotQA, Google’s Natural
Queries dataset

• Generate meaningful queries from questions
+ assess the right dataset (SQuAD) through
data exploration



• Evaluate performance of queries based on
SOTA QA models + fine tune them to work
better on queries itself.

• Train a neural machine translation model to
generate questions from queries.

• In depth error analysis on the query gener-
ation process and the outputs of our model
Q2Q model.

Proposed but couldn’t accomplish /

• Q2Q model output is reasonable but not as
good as it should be. Sometimes there is a
lot of redundancy in the generated output (see
Error Analysis below).

• We also wanted to generate queries by a rule
based approach to see how that fares against
an automated appraoch adopted by us, but it
was extremely time consuming and we be-
lieved that we could better invest our time in
analysing our results.

• We also wanted to try a more complex ap-
proach of generating questions by taking <
Query+Context > as input to the MT model
& then generate questions using some form
of constraint decoding. We simply ran out of
time. Our baseline models + analysis of re-
sults proved to be much harder and more time
consuming that we initially estimated.

Didn’t propose but did it anyway -

• Per feedback from the poster session, we de-
signed certain probe tasks by modifying our
queries by adding/removing certain key ques-
tion words to see how they affect the overall
performance, and the results were quite sur-
prising.

3 Related work

Information extraction has been an active area of
research in NLP (Tan et al., 2019; Xiong and Sun,
2018; Zhong et al., 2017) in the recent past. Do-
main specific question answering tasks, like Com-
munityQA (Wu et al., 2018; Nakov et al., 2017;
White et al., 2015) have predominantly served as
a defacto standard for evaluating how good mod-
ern lanuage models are at extracting relevant in-
formation from large corpora of text. Towards
this end, SQuAD (Rajpurkar et al., 2016) and Hot-
potQA (Yang et al., 2018) have been curated and

evaluated on human-level performance to serve as
benchmarks against which most modern language
models are evaluated. And within the last few
years, it appears that we’ve achieved super-human
performance on these QA tasks using natural lan-
guage models that rely on contextual represena-
tions of input (Peters et al., 2018; Lan et al., 2019;
Zhang et al., 2019b,a). Query to question con-
version to improve information extraction, how-
ever, was first suggested by (Lin, 2008). Lin di-
rectly linked this idea to improve query expan-
sion in CQA communities. This idea was fur-
ther amended by (Zhao et al., 2011), where they
follow a template based approach by generating
<query, question> pairs from CQA search logs.
But this framework, again, relies on the availabil-
ity of a massive corpus of questions. (Kalady
et al., 2010), although with a different overall
objective, proposes a method to create questions
from well formed sentence parse-trees and named
entity recognition (NER) models. (Kumar et al.,
2018) is the first recent effort in the direction of
incorporating machine translation models into the
context of converting queries to questions. In
their approach, they try to convert web-queries to
well formed questions using Statistical Machine
Translation (Cho et al., 2014) and Neural Ma-
chine Translation Models (Sutskever et al., 2014;
Bahdanau et al., 2014). However, even their ap-
proach is limited by the evaluation methodology
employed. Their primary method of evaluation
is the use of BLEU score, which has its own set
of limitations (Post, 2018). While they also re-
port human evaluation on certain parameters like
grammatical correctness, however, those parame-
ters are often irrelevant in this context since state
of the art language models are perfectly capable
of extracting relevant responses even the questions
being fed are do not hold perfect grammatical cor-
rectness.

4 Your dataset

We started our data exploration by looking at three
different QA datasets -

1. SQuAD - Stanford Question Answering
Dataset (Rajpurkar et al., 2016)

2. HotpotQA (Yang et al., 2018)

3. Google’s Natural Questions dataset
(Kwiatkowski et al., 2019)



Google’s natural questions dataset was the
most straightforward in terms of obtaining natural
language queries problem is that we did not have
associated passage with each query. Hence we
cannot feed this into BERT’s question answering
system without crawling the web for related con-
text. Also, Google Natural Questions are actual
web queries and they are mostly fully-formed
questions, unlike what we expect of a typical
human generated query (Table 1).

HotpotQA and SQuAD both looked promis-
ing but upon further inspection, we noticed that
queries generated using our approach on Hot-
potQA were, on average, longer in length than
a standard natural language query that a human
might input. Another issue with our dataset has
to do with some of the properties of the SQuAD
dataset, which we ultimately chose, out of the
three possibilities, to generate our query dataset
from. Many questions in SQuAD are un-query-
like due to depending heavily on context (e.g.,
Example S4 in Table 1) or being more com-
plex/verbose than a natural query. Although this
is more of an issue with HotPotQA questions, a
typical example of which is shown in H2 of Table
1, it is also observable in the average query and
question lengths shown in Table 3. In these re-
spects Google’s Natural Questions dataset would
be closer to ideal for our application; however, at
the time that we were deciding which dataset to
use, there were two reasons why we did not use
the Natural Questions dataset:

• They perform certain heuristics and the goal
of these is to discard a large proportion of
queries that are non-questions, while retain-
ing the majority of queries of 8 words or more
in length that are questions. This would still
not resemble queries that we feed into search
engines.

• The corresponding Wikipedia web-pages
would have to be crawled and processed as
in the NQ dataset, only the links to the
Wikipedia pages were available.

We have now described the models that we have
used in our work. The train-set of the model has
input in the format [input query, passage, answer].
We have trained the model with three kinds of in-
put queries - questions, generated queries, gener-
ated queries with prepended Wh-words(referred to

as ”Query with wh-words”). The dev-set and test-
set have input in the format [input query, passage]
and the output is the answer. The table 2 is a de-
scription of what we refer to the particular model
as, where a model is defined as [“input query” in
training set,“input query” in training set].

We decided to use the database of query and
question pairs we generated from SQuAD. At
the end of our preprocessing, we ended up with
130319 training (+ validation) and 11873 test ex-
amples.

4.1 Data preprocessing

One aspect of our project that proved to be ex-
tremely challenging was that, due to the difficulty
of obtaining web query logs from which we could
collect actual queries and questions, we needed to
create our own synthetic queries. To investigate
some options, we took questions from the three
question answering datasets and aimed to obtain
stripped-down versions of the original questions
that resembled what a human might type into a
search engine. The approach we took involved
stop word removal and lemmatization. Some ex-
amples of the results using these different datasets
can be seen in Table 1. In reality, however, a more
complex transformation happens between ques-
tion and natural query: for example, vocabulary
can change, word order can be shifted, and words
like “to” (which we removed) can be included in
the query. (Kumar et al., 2018) provide some ex-
amples of queries generated from actual web-logs
along with their associated questions which, at
times, differ considerably from the ones we have
generated.

5 Baselines

We created two baselines to use for both the fine-
tuned model and the NMT model. Table 4 shows
the performance of the baselines. This section
discusses how the baselines are created, and how
they are used. All fine-tuning is done using code
provided by Huggingface Transformers (Wolf
et al., 2019).

The first baseline (Question-on-Question) is
an uncased BERTLARGE model fine-tuned on the
original SQuAD 2.0 question dataset (Rajpurkar
et al., 2016), and evaluated with the original dev
set. The second baseline (Query-on-Question)
uses the same model, but is evaluated with our



SQuAD

S1
A. Who did Beyonce tie with for the most nominations in a year?
B. beyonce tie nomination year

S2
A. When did Winstron Churchill form his government?
B. winstron churchill form government

S3
A. What part of the airway is especially effected by neutrophils?
B. part airway especially effected neutrophil

S4
A. What does Cantonese have more of among Chinese varieties?
B. cantonese among chinese variety
Google Natural Questions

G1
A. who has the most followers on instagram in the world
B. follower instagram world

G2
A. what causes a dead zone in the ocean
B. cause dead zone ocean

G3
A. where is the original statue of david in italy
B. original statue david italy
HotpotQA

H1
A. Which state does the drug stores, of which the CEO is Warren Bryant, are located?
B. state drug stores, ceo warren bryant, located

H2
A. What American country music singer-songwriter, born in May of 1942, sang a duet with
her ex-husband the same year that he released the song “The Battle?”
B. american country music singer-songwriter, born may 1942, sang duet ex-husband year
released song “the battle”

H3
A. Who invented the type of script used in autographs?
B. invented type script used autograph

Table 1: Examples of Queries Generated on SQuAD, HotpotQA, Google’s Natural Questions Dataset.

own dev query set.

The F1 and EM scores dropped significantly
for the Query-on-Question baseline. This is
expected because many words are omitted in the
queries. The NMT model generates questions
from the queries, which we then evaluate on the
model fine-tuned on SQuAD 2.0 question dataset.
This should output scores that are better than the
Query-on-Question baseline. If the generated
questions are close to the original questions, the
scores should be close to the scores for our model.
We discuss the results in Section 7.

6 Your approach

To address this problem, we created a model
by fine-tuning an uncased BERTLARGE model
with our query dataset and evaluating with the
test query dataset (Query-on-Query). The same
configuration was used, fine-tuning is performed
for 2 epochs with a batch size of 3 (based on
multiple encounters with memory issues). The

learning rate is set to 3e-5. Devlin et al. use a
batch size of 48 and a learning rate of 5e-5. We
reduced the batch size due to memory constraints.
We use the same train/dev split from SQuAD 2.0,
with 130,319 questions in the train-val (80-20)
split, and 11,873 questions in the final test split.

We also considered this a machine translation
problem, where queries are in the source language
and generated natural languages are in the target
language. We also built a model that follows a
very similar approach, using our own dataset. We
first created a neural machine translation (NMT)
model using the Keras library (Chollet, 2015)
which was trained on the SQuAD dataset. The
model’s architecture was LSTM with RepeatVec-
tor (Figure 1).

Since the output wasn’t very good, we modified
our NMT model to include sequence-to-sequence
encoder-decoder attention architecture with 512
hidden units. We used the Pytorch library for our
new model. While we wanted to, but couldn’t
implement complex models like bi-directional



Dev set format Format fine-tuned on Referred to as in this work

Question Question Question-on-Question
Question Question Query-on-Question

Query (our approach) Query Query-on-Query
Query with wh-words Query with wh-words Query-Wh-on-Query-Wh
Query with wh-words Question Query-Wh-on-Question
Query with wh-words Query with wh-words Query-Wh-on-Query

Wh-words only Question Wh-on-Question
Wh-words only Query Wh-on-Query

Table 2: Col 1: Description of what queries we gave as validation set input; Col 2: Description of what the
training-set to the model was; Col 3: The term we use to refer to this model. (An important terminology to refer to
in future!)

Average Length (# tokens)
Questions Queries Passage

SQuAD 9.9 5.3 117
HotpotQA 17.6 10.4 887

Table 3: Average lengths of questions/queries in terms
of the number tokens

F1 EM
Question-on-Question 82.4058 79.2891
Query-on-Question 62.1541 59.4795

Table 4: F1 and EM scores for the Question-on-
Question and Query-on-Question baselines. There is a
significant but expected drop in the F1 and EM scores
when the dev query set is used, compared to Question-
on-Question.

LSTMs or a transformers-based model because
these models take a long time and computational-
resources to run and experiment. We chose
sequence-to-sequence encoder-decoder attention
model because it is doable and faster to prototype
and evaluate. One thing we noticed is that the
NMT model is aptly able to put back a wh-word
back into the question, where the input is a query
(remember when we generated the query, the stop
word removal process removed the wh-word!).
We expect that, using these generated questions,
the QA model performs better than the baseline
BERT QA system. Depending on the quality of
the translations, the scores should be close to
the scores for the Question-on-Question baseline
because we want the queries to be answered with

Figure 1: Baseline NMT without Attn

just as much accuracy.

The primary libraries that we used were Hug-
gingface Transformers (Wolf et al., 2019), Py-
Torch (Paszke et al., 2019), Keras, and NLTK.
Keras and PyTorch were used to build the neural
machine translation (NMT) model. The NLTK li-
brary (https://github.com/nltk/nltk) was used syn-
thetic dataset generation. The Huggingface Trans-
formers (https://github.com/huggingface) library,
which is a library on top of PyTorch that lets
you build networks with transformers, helped us
with the fine-tuning of BERT. We primarily used
Google Colaboratory for the project. We chose
Google Colab because it is free to use and has an



option of multiple people working on the project
at the same time. For the project, training the
model required a high-performing computer and
Google Colab has dedicated virtual computers that
have high specifications and GPU and TPU power
which was useful for the coding and compiling
purposes. We had to use Google Cloud Platform
(GCP) for fine-tuning and evaluating the base-
line model because we reached the RAM limit of
25GB in Google Colab. Running the code on GCP
was faster but we used GCP for only the essential
parts of the project because GCP is not free and it
would have been very expensive to run our whole
project on it.

The challenge that we faced was the absence of
a dataset. We did manage to generate a synthetic
dataset, but it is still not an exact represenation of
natural queries. For instance, among the NLTK
stop-words, there is the word “most”, which can
be a critical word in a query but is removed by
stop-word removal.

7 Error analysis

7.1 Analysis of BERT Performance on Query
Datasets

We examined approximately 100 examples from
several combinations of models and development
set formats. The models included the BERT
question-answering model fine-tuned on ques-
tions, queries, queries including question words,
and the question words alone (generated as de-
scribed in the Data section). Table 5 shows the F1
and Exact Match scores for all of the evaluation
methods.

Our first observation was that our query mod-
els have even more difficulty than the original
baseline question model predicting whether a
question/query is unanswerable, as shown in Table
5. Most of the overall exact match (EM) errors
that the models make are in this category, from
64.2% for Question-on-Question to 78.9% for
Query-on-Question. In particular, Table 5 shows
that Query-on-Question appears significantly
biased towards predicting unanswerable as com-
pared to the other models. This could be because
many of the words that it depends on to answer
questions have been removed from the queries,
so it doesn’t recognize the queries as answerable.
Meanwhile, apart from the Question-on-Question
baseline, the Query-on-Question model used in
our approach has the best results, though still

significantly worse than the Question-on-Question
baseline.

The errors made by the Question-on-Question
baseline model include a few noticeable types:

• Errors where the model seems to ignore cru-
cial words in the question, while associating
the Wh-word with another word in the ques-
tion that is close-by (see example 1).

• Errors due to faulty coreference resolution
(either missing or erroneous - see example 2)

Example 1:
Question: Who ruled the country of Normandy?
Correct answer: <unanswerable>
Wrong answer (Question-on-Question): Richard I
of Normandy.
Context: “The Duchy of Normandy, which they
formed by treaty with the French crown, was a
great fief of medieval France, and under Richard
I of Normandy was forged into a cohesive and
formidable principality in feudal tenure.”

In this example, the model seems to ignore
the word “country” in the question in order to
associate a “who” (Richard I) with “Normandy”,
which is close-by in the sentence.

Example 2:
Question: How many Huguenots were killed in
Toulouse?
Correct answer: “Nearly 3,000”
Wrong answer (Question-on-Question):
<unanswerable>
Context: “. . . Nearly 3,000 Protestants were
slaughtered in Toulouse alone. . . ”

The full context refers to Protestants and
Huguenots interchangeably, but the model fails to
recognize the coreference, so it fails. It is possible
that Question-on-Question simply did not have
enough data to master these types of examples.

Similar to Query-on-Question, there is a drop
in the F1 and EM scores for the Query-on-Query
evaluation, although to a lesser extent. In examin-
ing the kinds of questions Query-on-Question and
Query-on-Query both fail at, a few common char-
acteristics arise. First, most belong to the category
of decisions involving unanswerable questions
described above. Second is the appearance of a
preposition in the original question which was



Model True Neg. True Pos. False Neg.
(FN)

False Pos.
(FP) Acc. Total fails (EM) FP & FN / Total Fails

Question-on-Question 4834 5336 592 1111 0.8566 2653 0.6419
Query-on-Question 5040 2958 2970 905 0.6736 4910 0.7892
Query-on-Query 4152 5078 850 1793 0.7774 3712 0.7120
Query-Wh-on-
Query-Wh

3885 4920 1008 2060 0.7416 4246 0.7226

Query-Wh-on
-Question

4546 4327 1601 1399 0.7473 3956 0.7583

Table 5: Errors concerning unanswerable questions: errors made by marking an answerable question unanswerable
(false negative) or answering an unanswerable question (false positive). “Total fails” is the total number of exact
match fails made by the model, including errors made by giving the wrong answer to an answerable question.

removed in the creation of the query. And for all,
the queries do not include the question word -

Example:
Question: When were the Normans in Nor-
mandy?
Query: norman normandy
Correct answer: [’10th and 11th centuries’, ’in the
10th and 11th centuries’]
Wrong answer (Query-on-Query): a region in
France
Wrong answer (Query-on-Question): Normans

The above query example is missing ‘when’
(a question word) and ‘in’ (a preposition). It is
clear that the models are answering a question
corresponding to a different question word than
“when”, because the query is ambiguous. To see if
the missing question word was the main problem
for these models, we created the Query-Wh
dataset and ran it on several models (see Table 5).

One puzzle we faced was the low performance
of Query-Wh-on-Query-Wh, although it did
answer the above example correctly. Consider fol-
lowing example, which Query-Wh-on-Query-Wh
gets wrong but Query-on-Query and Query-Wh-
on-Question get right:

Example:
Question: What naval base fell to the Normans?
Wh-query: what naval base fell norman
Correct answer: <unanswerable>
Wrong answer: Dyrrachium
Context: “Some time later, Dyrrachium—one
of the most important naval bases of the Adri-
atic—fell again to Byzantine hands.”

We hypothesize that the model fine-tuned on

questions learns the relationship between the
question word and words like prepositions that
are excluded from queries. For example, it under-
stands that there is a sense in which something
(a “what”) might “fall to” as well as simply
“fall”. It still retains this knowledge in Query-
Wh-on-Question, improving performance over
Query-Wh-on-Query-Wh. Meanwhile, the model
fine-tuned on wh-queries seems to have learned to
in many cases simply return the nearest words that
are a “what” and defer to that reasoning (which
may work well much of the time) instead of the
reasoning used more successfully on the dev set
by the model fine-tuned on the original queries.
If there is no “what” word nearby, it seems to
default to unanswerable (it doesn’t succeed on
examples with long-term dependencies). But the
method seems to work in the case in the “When
were the Normans in Normandy?” example that
Query-Wh-on-Query-Wh answered correctly.

The performance of Query-Wh-on-Query is ap-
proximately the same as that of Query-on-Query
because the Query model learned no weights
for the question words, so the addition of the
question words has little effect. Therefore, we
conclude that the missing question words are not
the sole or primary reason for the performance
gap between the Query-on-Query model (our
approach) and the baseline Question-on-Question
model. Instead, it is most likely the absence of
words like prepositions that we removed during
query creation, with the absence of the wh-words
perhaps contributing.

In addition, to see the effects on performance
when only the question words exist, we per-
formed an evaluation with a dev dataset that
contains only the question words, and used these



queries on the Question and Query models. The
Wh-on-Question evaluation achieves an F1 score
of 34.44. With much of the context removed
from the questions, the model is unable to infer
what the questions are and hence cannot predict
answers in most cases. It considers most questions
unanswerable, making the F1 and Exact Match
scores for unanswerable questions high. In reality,
the model predicts very poorly on questions that it
considers answerable, save for a few cases where
the question words alone can pinpoint the contexts
in the passages. A similar effect is observed in
the Wh-on-Query evaluation, which achieves an
F1 score of 42.37. The model has no knowledge
of the question words and hence considers even
more questions unanswerable, increasing the
F1 score as a result. It can be seen from these
examples, then, question words are an important
indicator of what makes a question answerable,
corroborating the hypotheses above. An example
correct response from Wh-on-Query where the
context is obvious -

Example:
Question ID: 5737a84dc3c5551400e51f5a
Question: Why are some forces due to that are
impossible to model?
Wh-Query: why
Correct answers: [’gradient of potentials’, ’macro-
physical considerations that yield forces as aris-
ing from a macroscopic statistical average of mi-
crostates’, ’gradient of potentials.’, ’gradient of
potentials’]
Answer from Wh-on-Question: macrophysical
considerations that yield forces as arising from a
macroscopic statistical average of microstates
Context: “This is often due to macrophysical con-
siderations that yield forces as arising from macro-
scopic statistical average of microstates.”

7.2 Analysis of NMT Model

We examined the results from the NMT model.
Using the dev query set, we generated 11,788
question. 85 questions could not be generated.
The NMT model is able to construct questions
from the queries for the training set, although
sometimes with peculiarities. Figure 2 shows the
loss curve of the model during training. Table 6
shows samples of generated questions from their
queries in the training set. We observe that the
model is able to learn that the translation target is

a question and inserts question words, and in most
cases, ends the questions with a question mark.
The model however is often unable to complete
the questions or often repeats words.

Figure 2: Loss Curve for NMT model with Attention

The samples suggest that the model learned
which question word is to be used for a ques-
tion, based on the cues in the query. For exam-
ple, a query that starts with the word “year” is
translated into a question beginning with “in what
year,” (samples 1, 2, 3), a query about an object (in
the concrete or abstract sense) is translated into a
question with the question word “what” (sample
4), and a query about people is translated into a
question with the question word “who” (sample 5,
6).

Figure 3 shows the attention map of sample 4.
It indicates that “new” is correlated with an object
and hence there is a darker block in the “what”
row. Figure 4 shows the attention map of sample
6. It indicates that the model has learned a corre-
lation between the word “director” and the word
“movie.”

There are cases where the attention maps do not
reveal any particular information. For example,
Figure 5 and Figure 5 and show attention maps
where the weights are heavily skewed towards the
end of the queries.

We hypothesize that the model repeats words
and fails to complete the questions because of a
choice of decoding strategy that we used. We used
a beam search strategy, which would go down a
wrong path if the combined probability of a path
is higher than that of another path, causing repeti-
tions.

However, when the same model is used to gen-
erate questions from the dev query set, it breaks
down. Table 7 shows samples of generated ques-
tions from their queries on the training set. We ob-



Sample Query Predicted Question
1 year american revolution . in what year did the revolution revolution revolution?.
2 year republic ireland formed . in what year did the republic republic formed the republic?.
3 year america join world war . in what year did the world war join the world war?.
4 political machine controlled new york politics era . what era of the the new the new new new??...?
5 first roman babtized . who was the first roman?.
6 director of the movie . who was the director of the director of the.

Table 6: Samples of generated questions from queries on the training split. The model is able to insert question
words in all cases, but often cannot complete sentences properly.

Figure 3: Spurious Output from NMT Model

Figure 4: Question Output from NMT Model

serve that many of these generated questions use
words from the training set. This is likely because
we did not have enough words in the vocabulary
for the model to learn during training, and hence
the model generates nonsense.

Figure 5: Question Output from NMT Model

Figure 6: Question Output from NMT Model

7.3 Performance on Model Fine-Tuned with
Questions

We fed these questions into the BERT model fine-
tuned on the question dataset for evaluation. Table



Sample Query Predicted Question
7 principality william conquerer found . in which region language language located located assimilted ? .
8 island coast asia . when what bought located bought bought normans ? .
9 crime rate show correlated society . when th region region located unless th assimilted located ? ? ?
10 known working portfolio capture theory . on which region region located located located located located ? ? ? ? ?
11 obediant ispah rebellion . on measures leader techniques located normans . ?
12 simple unicellular organism lack . when located italy smaller integer nephew located nephew located ? .

Table 7: Samples of generated questions from queries on the dev split.

F1 Score 49.0300
EM Score 48.9650
HasAns F1 0.4191
HasAns EM 0.2889
NoAns F1 97.4763
NoAns EM 97.4763

Table 8: Scores from running BERT fine-tuned on the
dev query set with questions generated from the queries
using the baseline NMT model.

8 shows the results.
For the questions that the model considers

unanswerable, it performs poorly. Consider the
examples below, the model predicts the answers
correctly despite the undecipherable questions.
The passages associated with those questions are
rather short, and we suspect that the question
words or the words in the generated questions
gave enough clues for the model to predict the
correct answer.

Example:
id: 56de1563cffd8e1900b4b5c3
Question: What was the naval base called?
Generated question: denotes what region attacked
attacked located normans .
Correct answers: [’Dyrrachium’, ’Dyrrachium’,
’Dyrrachium’]
Answer from model: Dyrrachium
Context: “The further decline of Byzantine state-
of-affairs paved the road to a third attack in 1185,
when a large Norman army invaded Dyrrachium,
owing to the betrayal of high Byzantine officials.”

Example:
id: 56de4a474396321400ee2786
Question: Where are Jersey and Guernsey
Generated question: denotes located which
located located located . ? .
Correct answers: [’Channel Islands’, ’the Channel
Islands’, ’the Channel Islands’]

Answer from model: Channel Islands
Context: “The customary law of Normandy was
developed between the 10th and 13th centuries
and survives today through the legal systems of
Jersey and Guernsey in the Channel Islands.”

8 Contributions of group members

• Kathryn: Data collection/analysis, prepro-
cessing (including query generation) & a lot
of error analysis.

• Thivakkar: Built the baseline NMT model &
data preprocesssing and considerable writing.

• Apurva: Formulation of the overall idea of
the problem along with initial literature re-
view and analysis for future work in this di-
rection.

• Vincent: Fine tuning original QA models
based on BERT, evaluation of results on all
our models and a lot of error analysis.

• Somin: Built the Q2Q machine translation
model with attention, visualizations, lot of
writing and some error analysis.

9 Conclusions

In this work, we attempted to highlight and
tackle two key issues with modern state-of-the-
art question-answering models. First, we did a
thorough analysis of how these models perform
on sentence fragments (queries) rather than well
formed questions. Second, we attempted to for-
mulate the conversion of Query to Questions as
a machine translation problem & used a Seq2Seq
with attention-style architecture to do so. Our key
takeaways from this project were -

• It is incredibly hard to curate good quality
queries from existing QA databases. While
we feel that we did a reasonable job in gen-
erating queries, there could be a better repre-
sentative dataset for the task.



• When we fine-tuned BERT on the query
dataset, we could improve the performance
by 10.9 F1 points.

• One interesting observation that we made:
When we fine-tuned BERT on queries, that
had the wh-word prepended to the query and
tested it on the same queries, we found the F1
score to be 68.94. This is in contrast with the
score obtained on BERT fine-tuned on initial
query(without the wh-word) and tested on the
same: 73.06. We were expecting that when
we add the wh-word to the query, the perfor-
mance of the model should go up because the
query then becomes more question like and
therefore should be easier to answer.

• We need to try to generate a better NMT
model for the query to question conversion.

Given more time and resources, one of the
things we would definitely want to try is to come
up with better methods to generate queries us-
ing some statistical or heuristic methods. An-
other thing would be to try more complex mod-
els like bidirectional RNNs or transformers to cap-
ture information from queries & context to gener-
ate more meaningful questions.
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